OCR Oxford Cambridge and RSA		
day June 20XX – Morning	g/Afternoon	
AS Level Further Mathematics B (I Y411 Mechanics a	MEI)	
SAMPLE MARK SCHEME		Duration: 1 hour 15 minutes
MAXIMUM MARK 60		
	S	

This document consists of 12 pages

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
U1	Mark for correct units
G1	Mark for a correct feature on a graph
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

2. Subject-specific Marking Instructions for AS Level Further Mathematics B (MEI)

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

Mark Scheme

- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.
- k Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned on this occasion, but shows what a complete solution might look like.

	Question	Answer	Marks	AOs	Guidance
1		Power is $\frac{5 \times 9.8 \times 1.2}{2 \times 24 \times 3600} = 0.00034027W$	M1	1.2	Power is WD/time
			B1	1.1a	WD is <i>mgh</i>
			M1	3.4	Units put into SI
		0.000 340 W (3 s.f.)	A1	1.1	Accept e.g. $341 \mu W (3 \text{ s.f.})$ Don't
					insist on W
			[4]		
2		Suppose X is the midpoint of BC			
		XC = 5 and $AX = 12$	B1	3.1b	Finding length of the median
		CoM, G, is on AX, so $XG = 4$ cm	M1	1.1	CoM $\frac{1}{3}$ along median from the
					base
			A1	1.1	GX = 4
		CG is vertical and required angle is GCX			
		$= \arctan(\frac{4}{5})$	M1	2.1	soi
		= 38.6598 so angle is 38.7° (3 s. f.)	A1	1.1	
			[5]		
3	(i)	$MLT^{-2} = L \times LT^{-1} \times [\eta]$	B 1	1.1	Correct dimensions for <i>R</i> and one
					other
			M1	1.1	Equating dimensions with $[\eta]$.
		so $[\eta] = \frac{MLT^{-2}}{L^2T^{-1}} = ML^{-1}T^{-1} AG$	E1 [3]	3.3	Clearly shown

June	20XX
------	------

Question		ion	Answer	Marks	AOs	Guidance		
3	(ii)		E.g. Most of the points seem to lie on a straight line,	B1	1.1	For discussing a possible linear	This mark is for a comment	
			which passes through or near the origin.			model	about the experimental data	
							suggesting a proportional	
							relationship.	
			either					
			E.g. The result for $v = 4$ seems inconsistent with the	E1	2.2b	For commenting on the		
			others, perhaps some experimental error, so discard it.			experimental data		
			E.g. Model suggests a proportional relationship	A1	3.5a	For a conclusion which is	A1 can only be awarded for	
			between <i>R</i> and <i>v</i> [with <i>r</i> and η fixed], so experiment			consistent with their comments on	claiming proportionality if the	
			[with one point discarded] is consistent with the model.			the experimental data.	line was claimed to pass through	
							the origin.	
			or					
			E.g. The result at $v = 4$ looks inconsistent with the	E1				
			others, so possibly the linear relationship is not correct.					
			E.g. The experiment is not consistent with the model.	A1				
				[3]				
3	(iii)	(A)	$\left \frac{\rho r v}{\rho r v} \right = \frac{ML^{-3} \times L \times LT^{-1}}{1} = 1$	B1	1.1	Find the dimensions of the		
			$\begin{bmatrix} \eta \end{bmatrix}^{-} ML^{-1}T^{-1}$			expression		
				B1	1.1	Dimensions of density		
				[2]				
3	(iii)	(<i>B</i>)	Dimensionless so raising to power α will not affect the	E1	2.4	Could say M ⁰ L ⁰ T ⁰ instead of		
			dimensions of the term			dimensionless.		
				[1]				
4	(i)		Let the vertical cpt be U N					
			a.c. moments about P	M1	3.1b	Moments with only and all		
						appropriate forces		
			$0.5U - 0.3 \times 40 = 0$					
			so $U = 24$	E1	1.1	Clearly shown		
				[2]				

PMT

(Questi	on	Answer	Marks	AOs	Guid	ance
4	(ii)		Take cpts to be $X N \rightarrow$ and $Y N \uparrow$				
			Components $\uparrow Y + 24 - 40 = 0$ so $Y = 16$	B1	3.4	cao	
			$Components \rightarrow X - T\cos 60 = 0$	B1	1.1	cao	
			From (i) $T\sin 60 = 24$	M1	1.1a	FT their result	
			$x_{0} = x_{1} = 24 \frac{\cos 60}{-8} = 8 \sqrt{3}$	A1	1.1	BC	Accept 13.9 or 13.86
			$\frac{30}{10} = \frac{1}{100} = \frac{1}$				
				[4]			
4	(iii)		As on the point of slipping, $F = F_{max} = \mu R$	M1	2.2a	Using $F_{\text{max}} = \mu R$ and substituting	
						their X and Y	
			8,13,13	A1	1.1	BC	Accept 0.866 or 0.8660
			So $\mu = \frac{3\sqrt{2}}{16} = \frac{\sqrt{2}}{2}$			FT their (ii)	_
			10 2	[2]			
5	(i)		(\bar{r}) (-3) (0) (2) (5)	M1	1.1	Any correct method for at least 1	
	~ /		$10m\left \frac{\pi}{\pi}\right = 4m\left \frac{\pi}{4}\right + 3m\left \frac{\pi}{6}\right + m\left \frac{\pi}{6}\right + 2m\left \frac{\pi}{4}\right $			cpt	
			$\begin{pmatrix} y \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}$				
				AI	1.1	Allow 1 error including its	
				. 1	1 1	consequences	
			x = 0		1.1		
			y = 2.4	AI	1.1		
-	([4]			
5	(ii)		By symmetry, $x = 1$	B 1	2.4	May be established from 1 th	
			12	N/I	2.2	principles.	
			$12my = 5m \times 2 + 2m \times 0 + 5m \times 2$	MI	3.3	Correct method using mid-points	
				B1	1.1a	Masses in the correct ratio	
			$\overline{v} = \frac{5}{2}$	Al	1.1		
			3				
				[4]			

June	20XX
------	------

Question	Answer	Marks	AOs	Guidance

5	(iii)	$(10m+12m)\overline{x} = 10m(0)+12m(1)$	M1	3.1b	Method for combining (accept	
		$\overline{x} = \frac{6}{11}$ (0.5454)	A1	1.1	FT their (i), (ii)	
			[2]			
6	(i)	Change in GPE is $40 \times 9.8 \times 12 = 4704$ J	B 1	1.1	4 s.f. not required	
			[1]			
6	(ii)	$4704 + \frac{1}{2} \times 40 \times 4^{2} + 484$	M1	3.3	Use of GPE and KE and WD.	
		2			Accept wrong	
					sign	
			B1	1.1	KE term correct	
		= 5508 J	A1	1.1	FT only from (i). 4 s.f. not	
					required	
			[3]			
6	(iii)	Distance travelled is $\frac{12}{12}$	B1	1.1		
		$\sin \alpha$				
		Frictional force is $0.6 \times 40g \cos \alpha$	M1	3.4	Use of $F = \mu R$	
			B1	1.1	Value of <i>R</i>	
		Using the WE equation	M1	1.1	All terms present. Allow sign errors	
		$\frac{1}{2} \times 40 \times 3^2 - \frac{1}{2} \times 40 \times 4^2 = 4704 - 0.6 \times 40g \cos \alpha \times \frac{12}{\sin \alpha}$	B1	3.4	KE terms. Allow sign errors	
			R1	11	Friction term Allow sign errors	
		$\tan \alpha = 0.5826589$	DI	1.1		
		$s_0 \alpha = 30.227599$ so 30.2° (3 s f)	A1	1.1	FT only from (i)	
					Must show $^{\circ}$ or rad (0.52757)	
			[7]			

PMT

	Questi	on	Answer	Marks	AOs	Guidance
6	(iv)	(<i>A</i>)	For speed 0 at D, $\alpha = 29.3^{\circ}$			
			$29.3^{\circ} < \alpha < 30.2^{\circ}.$	B1	3.4	
				[1]		
6	(iv)	(<i>B</i>)	Not practical to keep angle within such small margins.	B1	3.5a	
				[1]		
7	(i)		In whole question take +ve \rightarrow			+ve could be either way
			Suppose Steve's final speed is v_s m s ⁻¹			
			PCLM $56 \times 1.4 - 64 \times 0.6 = 56 \times 0.28 + 64v_s$	M1	3.3	Use of PCLM. Allow sign errors.
			so $v_s = 0.38$	A1	3.4	
			in Rose's original direction	A1	1.1	Accept implied (e.g. by a
						diagram)
				[3]		
7	(ii)		0.38-0.28	M1	3.4	Must be right way up. FT. Accept
			Using NEL $\frac{-0.6 - 1.4}{-0.6 - 1.4} = -e$			sign errors.
			so e = 0.05	A1	1.1	FT only from (i)
				[2]		
7	(iii)		Suppose R's final speed is $U \rightarrow$			
			$4.48 + 56 \times 0.28 = 56 U$	M1	3.4	Use of PCLM
			so $U = 0.36 \text{ m s}^{-1}$	A1	1.1	cao Direction stated or clear
						(e.g. from a diagram)
				[2]		

PMT

Question	Answer	Marks A	AOs	Guidance
			·	

7	(iv)	Let final speed be $V \rightarrow$ either LM is conserved in all the interactions so $56 \times 1.4 - 64 \times 0.6 = (56 + 64)V$ so $V = \frac{1}{3}$	M1 A1 A1	3.1b 1.1 1.1	Using PCLM Allow only sign errors cao (Accept e.g. 0.333 to 3 s. f.)	
		or Use momentums after 1 st collision or after hand pulling $(56 + 64)V = 56 \times 0.28 + 64 \times 0.38$ or $(56 + 64)V = 56 \times 0.36 + 64 \times 0.31$ so $V = \frac{1}{3}$	M1 A1 A1 [3]		If after hand pulling, must have attempted Steve's speed (0.31) Either form. Allow only sign errors. cao	
7	(v)	So that linear momentum is conserved (after the first collision)	B1 [1]	3.5b		

Mark Scheme

Question	AO1	AO2	AO3(PS)	AO3(M)	Total					
1	3	0	0	1	4					
2	3	1	1	0	5					
3i	2	0	0	1	3					
3ii	1	1	0	1	3					
3iiiA	2	0	0	0	2					
3iiiB	0	1	0	0	1					
4 i	1	0	1	0	2					
4ii	3	0	0	1	4					
4iii	1	1	0	0	2					
5i	4	0	0	0	4					
5 ii	2	1	0	1	4					
5 iii	1	0	1	0	2					
6i	1	0	0	0	1					
6 ii	2	0	0	1	3					
6 iii	5	0	0	2	7					
6ivA	0	0	0	1	1					
6ivB	0	0	0	1	1					
7i	1	0	0	2	3					
7ii	1	0	0	1	2					
7iii	1	0 🔶	0	1	2					
7iv	2	0	1	0	3					
7v	0	0	0	1	1					
Totals	36	5	4	15	60					
6										

BLANK PAGE